Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Strahlenther Onkol ; 199(12): 1128-1139, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36229655

RESUMO

PURPOSE: Despite new treatment options, melanoma continues to have an unfavorable prognosis. DNA damage response (DDR) inhibitors are a promising drug class, especially in combination with chemotherapy (CT) or radiotherapy (RT). Manipulating DNA damage repair during RT is an opportunity to exploit the genomic instability of cancer cells and may lead to radiosensitizing effects in tumors that could improve cancer therapy. METHODS: A panel of melanoma-derived cell lines of different origin were used to investigate toxicity-related clonogenic survival, cell death, and cell cycle distribution after treatment with a kinase inhibitor (KI) against ATM (AZD0156) or ATR (VE-822, berzosertib), irradiation with 2 Gy, or a combination of KI plus ionizing radiation (IR). Two fibroblast cell lines generated from healthy skin tissue were used as controls. RESULTS: Clonogenic survival indicated a clear radiosensitizing effect of the ATM inhibitor (ATMi) AZD0156 in all melanoma cells in a synergistic manner, but not in healthy tissue fibroblasts. In contrast, the ATR inhibitor (ATRi) VE-822 led to additive enhancement of IR-related toxicity in most of the melanoma cells. Both inhibitors mainly increased cell death induction in combination with IR. In healthy fibroblasts, VE-822 plus IR led to higher cell death rates compared to AZD0156. A significant G2/M block was particularly induced in cancer cells when combining AZD0156 with IR. CONCLUSION: ATMi, in contrast to ATRi, resulted in synergistic radiosensitization regarding colony formation in melanoma cancer cells, while healthy tissue fibroblasts were merely affected with respect to cell death induction. In connection with an increased number of melanoma cells in the G2/M phase after ATMi plus IR treatment, ATMi seems to be superior to ATRi in melanoma cancer cell treatments when combined with RT.


Assuntos
Melanoma , Radiossensibilizantes , Humanos , Radiossensibilizantes/farmacologia , Piridinas , Inibidores de Proteínas Quinases/farmacologia , Fibroblastos/metabolismo , Linhagem Celular Tumoral , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
2.
Genes (Basel) ; 12(6)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204447

RESUMO

(1) Kinase inhibitors (KI) targeting components of the DNA damage repair pathway are a promising new type of drug. Combining them with ionizing radiation therapy (IR), which is commonly used for treatment of head and neck tumors, could improve tumor control, but could also increase negative side effects on surrounding normal tissue. (2) The effect of KI of the DDR (ATMi: AZD0156; ATRi: VE-822, dual DNA-PKi/mTORi: CC-115) in combination with IR on HPV-positive and HPV-negative HNSCC and healthy skin cells was analyzed. Cell death and cell cycle arrest were determined using flow cytometry. Additionally, clonogenic survival and migration were analyzed. (3) Studied HNSCC cell lines reacted differently to DDRi. An increase in cell death for all of the malignant cells could be observed when combining IR and KI. Healthy fibroblasts were not affected by simultaneous treatment. Migration was partially impaired. Influence on the cell cycle varied between the cell lines and inhibitors; (4) In conclusion, a combination of DDRi with IR could be feasible for patients with HNSCC. Side effects on healthy cells are expected to be limited to normal radiation-induced response. Formation of metastases could be decreased because cell migration is impaired partially. The treatment outcome for HPV-negative tumors tends to be improved by combined treatment.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Morte Celular/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Raios X , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Células Cultivadas , Reparo do DNA/efeitos dos fármacos , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Humanos , Isoxazóis/farmacologia , Pirazinas/farmacologia , Piridinas/farmacologia , Quinolinas/farmacologia , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...